Monday

07 easy steps: Differentiation for the Beginners

Differentiation for the Beginners





Rules of Differentiation

1.       Constant Rule

2.       Power Rule

3.       Constant Multiple Rule

4.       Sum and Difference Rule

5.       Product Rule

6.       Quotient Rule

7.       Chain Rule

_______________________________________________________________________________

Let’s take a simple example:

Function = (2x + 5)

(2x + 5) is a function of X, and we can write it as,

f(x) = (2x + 5)

(Hint: (3t+5) is a function of t, and we can write it as, f(t)=(3t+5) )

The symbol for differentiation of X’s function is:

d/dx [f(x)]

(Hint: The symbol for differentiation of t’s function, we can write it as, d/dt [f(t)] )

_______________________________________________________________________________

We can write the differentiated function as:

f ‘ (X)

It means:

The function of X is equal to [any function] ( f(X) = [any function] )and after differentiating it, we can write it as f ‘ (X):

f ‘ (X) = [differentiated any function]

_______________________________________________________________________________

 

 

Rule Number 01: THE CONSTANT RULE

d/dx [C] = 0      

(C is a Constant)

 

Ex:

1)      f (x) = 5  (5 is a constant)

f ’ (x) = 0

      2)      f (x) = 255  (255 is a constant)

f ’ (x) = 0

      3)      f (x) = -5  (-5 is a constant)

f ’ (x) = 0

 

Rule Number 02: THE POWER RULE

d/dx [Xn] = n X n-1

(n is any real number)

Ex:

f (X) = X3

f ’ (X) = 3X2

Let’s take the above example:

Here, as per the rule: n is equal to 3 and (n-1) is equal to 2.

Xn = X3

nX(n-1)   =  3X(3-1) 

The answer is 3X(3-1) is equal to 3X2

 

Ex:

1.       f (X) = X4

f ’ (X) = 4.X4-1

                           = 4X3


2.       f (X) = X0

f ’ (X) = 0.X0-1

                           = 0


3.   f (X) = X = X1  

f ’ (X) = 1.X1-1

           = 1.X0

           = 1         ;   (X0 = 1)

 

Rule Number 03: THE CONSTANT MULTIPLE RULE

d/dx [C.f(X)] = C.f ’ (X)

(C is a Constant)

Ex:

f (X) = 9 X2

f ‘ (X) = 9.2.X(2-1)

            = 18X

 

Let’s take this example:

[C.f(X)] = 9X2

In here, 

C is equal to 9;

f(X) is equal to X2 ;

f ‘ (X) is equal to 2.X(2-1) ;

Then:

d/dx C [f (X)] = C.[ f ’ (X)]

                        = 9.[ f ’ (X)]

                        = 9 [2.X(2-1)]

                        = 9.2. X(1)     

                        = 18X

 

Rule Number 04: THE SUM and DIFFERENCE RULE

SUM RULE:

d/dx [ f(X) + g(X) ] = d/dx f(X)  +  d/dx g(X)

[ g(X) is also an another function as f(X) ]

 

f (X) = 6X2 + 5X2

f ‘ (X) =  d/dx (6X2) +  d/dx (5X2)

            = 6.2.X(2-1) + 5.2.X(2-1)

            = 12X + 10X

            = 22X

 

 

f (X) = 3X2 + 6X1          

f ‘ (X) = d/dx (3X2) +  d/dx (6X1)

            = 3.2.X(2-1) + 6.1.X(1-1)

            = 6X + 6X0           ; (X0 = 1)    

            = 6X + 6.1

            = 6X + 6

 

DIFFERENCE RULE:

d/dx [ f(X) - g(X) ] = d/dx f(X)  -  d/dx g(X)

[ g(X) is also an another function as f(X) ]

 

Ex:

f (X)    = 5X2 – 3X

f ‘ (X)  = d/dx (5X2) -  d/dx (3X1)

                = 5.2.X(2-1) – 3.1.X(1-1) 

                = 10X1 - 3X0    ; (X0 = 1)    

                = 10X – 3

 

f (X)    = 2X – 5X3 

f ‘ (X)  = d/dx (2X1) -  d/dx (5X3)

                = 2.1.X(1-1) – 5.3.X(3-1) 

                = 2X0 - 15X2    ; (X0 = 1)    

                = 2 – 15X2    

 

Rule Number 05: THE PRODUCT RULE

d/dx [f (X) . g (X)] = [ f (X) . g’ (X) ] + [ g (X) . f ‘ (X) ]

f (X) and g (X) are functions of X.

 

When the first function f(X), is multiplied by the second function g(X), the answer for its differentiation is:

(First function multiplied by differentiation of second function + Second function multiplied by differentiation of the first function)

Ex:

f (X) . g (X) = 4X2 . (5X-2)

d/dx [4X2 . (5X-2)] = [4X2. d/dx (5X1 – 2)] + [(5X1 – 2) . d/dx (4X2)]

f ‘ [4X2 . (5X-2)] = 4X2 . [5.1.X(1-1) - 0] + (5X1 – 2) . [4.2.X(2-1)]

                                = 4X2.[5-0] + (5X1 – 2).[8X]

                                = 20X2 + 40X2 – 16X

                                = 60X2 – 16X

 

f (X)       = 9X3 . (2X4 -1)

f ‘ (X)     = 9X3 . d/dx [(2X4 -1)]  + (2X4 -1). d/dx [9X3]

                = 9X3 . [2.4.X(4-1) - 0] + (2X4 -1) . [9.3.X(3-1)]                   

                        =  9X3 (8X3)  +       (2X4 -1).(27.X2)                                                                                                                                                                          

                        = 72X6 + 54X6 – 27X2       

                = 126X6 – 27X2                  

 

Rule Number 06: THE QUOTIENT RULE

d/dx [ f (X) / g (X) ] =  [ g (X) . f ‘ (X)  -  f (X) . g ‘ (X) ] / g (X)2     

                           g (X) 0

f (X) and g (X) are functions of X.

When a function, f (X), is divided by another function, g (X), the answer for its differentiation is:

(Denominator function is multiplied by differentiation of Numerator function) MINUS (Numerator function is multiplied by differentiation of Denominator function) and the whole answer is DIVIDED by the square value of the denominator function.

Ex:

f (X) = 3X / (X - 1)

f ‘ (X)     = [(X - 1). d/dx (3X) ] – [(3X). d/dx (X-1) ]  /  (X-1)2

                        = (X - 1).(3.1.X(1-1))  -  3X.(1.X(1-1) - 0) / (X-1)2

                        = [ (X - 1).3  -  3X.1 ]  /  (X-1)2

                        = [ (X - 1).3  -  3X ] / (X-1)2

 

Ex:

f (X)       = 5X2 / (X2 - 3)

f ‘ (X)     = [ (X2 - 3) . d/dx (5X2)  -  5X2  . d/dx (X2 - 3) ]  /  (X2 - 3)2

                        = [ (X2 - 3). 5.2.X(2-1)  - 5X2  . 2.X(2-1) - 0  ]  /  (X2 - 3)2

                        = [ (X2 - 3).10X  -  5X2 .2X ]  /  (X2 - 3)2

                        = [ 10X3 – 30X – 10X3 ]  /  (X2 - 3)2

                        = [ -30X ] /  (X2 - 3)2

 

Rule Number 07: THE CHAIN RULE

d/dx (y) = d/du (y) . d/dx (u)

(If y = f (u) is a differentiable function of u, and u = g(x) is a differentiable function of x, then y = f (g (x)) is a differentiable function of x)

Ex:

f (X) = (5X -3)3  

f ‘ (X)   = [3. (5X -3)(3-1)]. d/dx (5X1-3)

            = [3. (5X -3)2 ]. [5.1.X(1-1) - 0]

                = [3. (5X -3)2 ] . [5]

                        = 15. (5X -3)2                         

 

Ex:

f (X) = (X2 -1)4  

f ‘ (X)   = [4. (X2 - 1)(4-1)]. d/dx (X2 - 1)

            = [4. (X2 - 1)3 ]. [2.X(2-1) - 0]

                = [4. (X2 - 1)3 ] . [2X]

                        =  8X. (X2 - 1)3

 

Simple Examples for the Beginners:


1. y = ln |(1 + X)|

d/dx y   = d/dx . ln |(1 + X)|

                =1/(1 + X)


2         Rule no 07: Chain Rule Example

X  = t2 + 2

Y = t3 – 1

Find d/dx Y;

X = t2 + 2

Here, X is a function of t. Then;

d/dt X   =  d/dt (t2 + 2)

                = 2t     < 1st answer

Y = t3 - 1

Here, Y is a function of t. Then;

d/dt Y    =  d/dt (t3 - 1)

                =  3t2     < 2nd answer

 

According to the Chain Rule;

d/dx Y   = d/dt Y  .  d/dx t

But from the first answer;

d/dt X is equal to 2t

Then inverse it;

d/dx t is equal to 1/2t

 

According to the Chain Rule;

d/dx Y   = d/dt Y .  d/dx t

                =  3t2  .  1/2t

                = (3/2) t

 

3.       Rule no 01, Rule no 02 : Constant Rule and Power Rule

g(X)        = 5 . √X + 4

g ‘ (X)    = d/dx (5 . √X + 4)

                = d/dx (5 . X(1/2) + 4)

                = 5 . [ (1/2)X(1/2 - 1)   ]+ 0

                        = 5/2 . X(-1/2)

 

4.  Y             = 4X(-2)  +  2X2

d/dx Y     = d/dx  4X(-2)  + d/dx (2X2)

                = 4.(-2).X(-2-1) + 2.2.X(2-1)

                        =  -8.X(-3) + 4X

 

5.       Rule no 05 : The Product Rule

f (X) = (X3 – 3X) . (2X4 + 5X)

d/dx (X) = (X3 – 3X) d/dx (2X4 + 5X1) + (2X4 + 5X) d/dx (X3 – 3X1)

                = (X3 – 3X) . [ 2.4.X(4-1) + 5.1.X(1-1) ] + (2X4 + 5X). [ 3X(3-1) – 3.1.X(1-1)  ]

            =  (X3 – 3X) . [8X3 + 5] + (2X4 + 5X).[3X2 - 3]


6         Rule no 06 : The Quotient Rule

 

f (X) = (X-3)/(X+4)

d/dx f (X)         = [(X+4).d/dx (X1-3) - (X-3).d/dx (X1+4) ]  /  (X+4)2

f ‘ (X)               = [(X+4). (1.X(1-1) – 0)  -  (X-3). (1.X(1-1) – 0) ] / (X+4)2

                        = [(X+4).1  -  (X-3).1 ] / (X+4)2

                                                = [(X+4)  -  (X-3)] / (X+4)2


-------------------------------------------------------- End ---------------------------------------------------------


No comments:

Post a Comment

Contact Us

Name

Email *

Message *