Monday

Mathematical Integration | Integration for the beginners | Easy Steps

Integration for the beginners | Mathematical Guide 




Integration and the definite integral: Supportive lecture for the beginners.

The symbol for integration is  

Basic Integration Rules

1.       k dx                                     = kx + C ; k is a constant

2.       k f (x) dx                             = k f(x) dx

3.       [ f(x) + g(x) ] dx                 = f (x) dx + g(x) dx

4.       [ f(x) - g(x) ] dx                  = f (x) dx - g(x) dx

5.       xn dx                                   = [xn+1 / n+1] + C               ; n≠ (-1)

_______________________________________________________________

In every integration operation without limits, we added C as a constant after the integration. Below will explain it simply;

As an example:

d/dx (X2 + 5) is equal to -> d/dx (X2) + d/dx (5)

After the differentiation;

d/dx (X2 + 5) is equal to -> 2X


If it is difficult to understand: Let’s visit the simple steps of differentiation

Then, let we integrate 2X, in here the answer should be [X2 + 5]

2X1 is equal to -> 2 ∫ X1

The answer is equal to

= 2. [ X(1+1)/(1+1) ]

= 2.[X2/2]

= X2

But the answer should be [X2 + 5]

Therefore we have to add a constant value at the end of the result, consuming the constant value is equal to any value.                      

_______________________________________________________________

 

 

Rule 01:

k dx     = kx + C ; k is a constant


Ex:

1. Find ∫ 2 dx

∫ 2 dx = ∫ 2.1 dx

Then, 1 is equal to X0; (Power zero of any number is equal to one)

∫ 2 dx = ∫ 2. X0 dx

                = 2 ∫ X0 dx

                = 2. [X0+1/ 0+1] ; According to the Rule Number 05

                = 2. [X / 1]

                = 2.X + C               ; C is a constant


 2. Find ∫ (-3) dx

∫ (-3) dx = -3X


3. Find ∫ 1 dx

∫ 1 dx = 1X

                = X + C  ; C is a constant

 

4. Find ∫ 10 dt

∫ 10 dt = 10t + C ; C is a constant

               

 

Rule 02:

k f (x) dx = k f(x) dx


Ex:

1. Find ∫ 4.X dx

In here, X is equal to f(X) and 04 is equal to k;

∫ 4X dx = 4 ∫ X dx

                  = 4 ∫ X1 dx

                  = 4 [X (1+1)/ (1+1)] + C

                  = 4 [X2/2] + C

                  = 4/2 X2 + C

                  = 2X2 + C            ; C is a constant


2. Find ∫ 2/X3 dx

∫ 2/X3 dx              = 2 ∫ 1/X3 dx

                                = 2 ∫ X-3 dx

                                = 2. X(-3+1)/ (-3+1) + C

= 2.X-2/(-2) + C  

                                = -X-2 + C              ; C is a constant

 

Rule 03.

[f(x) + g(x)] dx                = f (x) dx + g(x) dx

 

Ex:

Find ∫ (X + 5) dx

In here, X is equal to f(X) and 5 is equal to g(X);

∫ (X + 5) dx          = ∫ (X) dx + ∫ (5) dx

                                = ∫ X1 dx + 5 ∫ X0 dx

                                = [X(1+1)/(1+1)] + 5.[X(0+1)/(0+1)]                 ; According to the Rule 05

                                = [X2/2] + 5.[X1/1]

                                = [X2/2] + 5X + C               ; C is a constant

 

                       

Rule 04.

[f(x) - g(x)] dx                 = f (x) dx - g(x) dx

 

Ex:

Find ∫ (X3 - 2) dx

In here, f(x) is equal to X3 and g(x) is equal to 2;

∫ (X3 - 2) dx         = ∫ X3 dx - ∫ 2 dx

                                = ∫ X3 dx –∫ 2.X0 dx

                                = ∫ X3 dx – 2 ∫ X0 dx

                                = [X(3+1) / (3+1)] – 2. [X(0+1) / (0+1)]            ; According to the Rule 05

                                = [X(4) / 4] – 2. [X(1) / 1]

                                = [X(4) / 4] – 2. [X]

                                = X(4) / 4 – 2X + C                               ; C is a constant

 

Rule 05.

xn dx = [xn+1 / n+1] + C                 ; n≠ (-1)

 

Ex:

Find ∫ (x4) dx

In here 4 is equal to n;

∫ (x4) dx                = X(4+1) / (4+1)

                                = X5 / 5 + C                          ;C is a constant

 

Find ∫ 4X3 dx

∫ 4X3 dx = 4. ∫ X3 dx                         

                                = 4. [ X(3+1) / (3+1) ]

                                = 4. [X4 / 4]

                                = X4 + C                 ;C is a constant


------------------------------------------------------------------------------------------------------------------- 

Definite Integration

The expression of

ab f(X)

Is called the definite integral from a to b.

The lowest limit of the integration is a & the upper limit of the integration is b.

Simply the function, f(X) is a graph of a coordinate plane. We can define the area of that graph by integrating the function, f(X) with using the limits. The area that covered by the function is limited by those limits, a & b.

 

Ex:

Find f(X) = X3 – 2,     2 <= X <= 4

In here, f(X) is equal to (X3 – 2) and a & b is equal to 2 & 4.

Let’s find the area;

·         First we have to integrate the function

·         Then we have to define the limitations 

 

Area              = ∫42 (X3 – 2) dx

                        = [X4/4 – 2X] 42

Then we have to add limits values to the X.

                        = [44 / 4  -  2(4) ] – [24 / 4 – 2(2)]

                        = [256/4 – 8] – [16/4 - 4]

                      = [64 - 8] – 0

                      = 56 

 

Find f(X) = (X2 - 5)                            1 <= X <= 3

In here, f(X) is equal to (X2 – 5) and a & b is equal to 1 & 3.

Let’s find the area;

Area                      = ∫31 (X2 – 5) dx

                                = [X3/3 – 5X] 31

                                = [33 / 3 – 5(3)] – [13 / 3 - 5 (1)]

                                = [9 – 15] – [1/3 – 5]

                                = [-6] – [-14/3]

                                = [-6] + [14/3]

                                = -4/3

 

Simple integration examples for the beginners

Example 01:

Find ∫ dt

∫ dt         = ∫ t0 dt

                = t(0+1) / (0+1)

                = t1/1    

                = t


Example 02:

Find ∫ 8 dt

∫ 8 dt     = ∫ 8.1 dt              (8*1=8)

                = 8 ∫ 1 dt

                = 8 ∫ t0 dt             (zero power of any function is equal to 1)

                = 8.t + C                ;C is a constant


Example 03:

Find ∫ (X-4)(X+4) dx

∫ (X-2)(X+2) dx = ∫ X.(X+2) -2.(X+2) dx

                                    = ∫ X2 + 2X -2X -4 dx    

                                    = ∫ X2 - 4 dx

                                    = ∫ X2 – 4.X0 dx

    = [X(2+1) / (2+1)] – 4[X1/1]

                                    = [X3 /3] – 4X + C          ; C is a constant

 

Example 04:

Find ∫03 2X dx

03 2X dx               = 2 ∫30 X1 dx

                                = 2 [X2 / 2] 30 

                                = [X2]30

                                       = [32 - 0]

                                 = 9


Example 05:

Find ∫01 √X (1-X) dx

01 √X (1-X) dx = ∫01 √X – X (3/2) dx

                                   = ∫01 X (1/2) – X (3/2) dx

                                   = [X(1/2 + 1) / (1/2 + 1)] 01 – [X(3/2 + 1) / (3/2 + 1)] 01

                                                   = [X(3/2) / (3/2) ] 01 – [X(5/2) / (5/2)] 01      

Replace X with 1 and 0;

                                   = [1(3/2) / (3/2) - 0(3/2) / (3/2)] -  [1(5/2) / (5/2) - 0(5/2) / (5/2)]

                                   = [2/3 – 0] – [2/5 - 0]

                                  = [2/3] – [2/5]

                                  = 4/15


----------------------------------------------------- The End --------------------------------------------------------

No comments:

Post a Comment

Contact Us

Name

Email *

Message *